Hexagonal Parquet Tilings k - Isohedral Monotiles with Arbitrarily Large k
نویسنده
چکیده
The interplay between local constraints and global structure of mathematical and physical systems is both subtle and important. The macroscopic physical properties of a system depend heavily on its global symmetries, but these are often difficult to predict given only information about local interactions between the components. A rich history of work on tilings of the Euclidean plane and higher dimensional or non-Euclidean spaces has brought to light numerous examples of finite sets of tiles with rules governing local configurations that lead to surprising global structures. Perhaps the most famous now is the set of two tiles discovered by Penrose that can be used to cover the plane with no overlap but only in a pattern whose symmetries are incompatible with any crystallographic space group. [1, 2] The Penrose tiles “improved” on previous examples due to Berger [3] and others (reviewed by Grünbaum and Shephard [4]) showing that larger sets of square tiles with colored edges (or several types of bumps and complementary nicks) could force the construction of a non-periodic pattern.
منابع مشابه
T Hexagonal Parquet Tilings k - Isohedral Monotiles with Arbitrarily Large k JOSHUA
T he interplay between local constraints and global structure of mathematical and physical systems is both subtle and important. The macroscopic physical properties of a system depend heavily on its global symmetries, but these are often difficult to predict given only information about local interactions between the components. A rich history of work on tilings of the Euclidean plane and highe...
متن کاملA Method to Generate Polyominoes and Polyiamonds for Tilings with Rotational Symmetry
We show a simple method to generate polyominoes and polyiamonds that produce isohedral tilings with p3, p4 or p6 rotational symmetry by using n line segments between lattice points on a regular hexagonal, square and triangular lattice, respectively. We exhibit all possible tiles generated by this algorithm up to n = 9 for p3, n = 8 for p4, and n = 13 for p6. In particular, we determine for n ≤ ...
متن کاملHexagonal Inflation Tilings and Planar Monotiles
Aperiodic tilings with a small number of prototiles are of particular interest, both theoretically and for applications in crystallography. In this direction, many people have tried to construct aperiodic tilings that are built from a single prototile with nearest neighbour matching rules, which is then called a monotile. One strand of the search for a planar monotile has focussed on hexagonal ...
متن کاملPolyominoes and Polyiamonds as Fundamental Domains of Isohedral Tilings with Rotational Symmetry
We describe computer algorithms that produce the complete set of isohedral tilings by n-omino or n-iamond tiles in which the tiles are fundamental domains and the tilings have 3-, 4-, or 6-fold rotational symmetry. The symmetry groups of such tilings are of types p3, p31m, p4, p4g, and p6. There are no isohedral tilings with p3m1, p4m, or p6m symmetry groups that have polyominoes or polyiamonds...
متن کاملInterlinked Isohedral Tilings of 3D Space
Di erent isohedral tilings of the Euclidian Space are studied in this paper. Using the Voronoi zone in various lattices, we derived toroidal shapes that interlink with each other to ll space completely. The tile of main interest was the 3-segment ring-tile, for which we found several linear approximations.
متن کامل